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This paper is a description of an experimental study of round, turbulent jets and 
plumes, investigating the effects of buoyancy on the fractal structure. The jets and 
plumes are formed by injecting fluid from a small source, with diameter, d, of 
0.508 mm, into a stationary body of water contained in a tall tank of dimensions 
1.75 m high by 0.6 m by 0.6 m. For both jets and plumes the Reynolds number at the 
source was in the range 800 to 1800, and the flow was observed in the far field at 
distances 250d to 550d. In the case of the plumes momentum still dominated near the 
source so that the flow was fully turbulent before buoyancy forces had a significant 
effect. The source fluid was dyed with fluorescein, and the flow was illuminated by a 
‘thick’ sheet of light (thick in the sense of many Kolmogorov scales) effectively giving 
a projection rather than a true two-dimensional slice. The fractal dimensions of 
contours of concentration on this projection were measured, with care taken to 
normalize with respect to the local intensity and lengthscales. There were no significant 
differences in the results for jets and plumes, so the smaller scales of motion seem 
unaffected by the presence of buoyancy forces. The fractal dimension was found to be 
a function of threshold intensity, with an apparent minimum of 1.23. This may be an 
artefact of the noise level, however, and an estimated value for the zero-intensity 
threshold of 1.16 may be important, though the use of a single value for the fractal 
dimension is questionable. The implications of the results for measurements where no 
account has been taken of local scales is discussed. 

1. Introduction 
This paper describes the results of an experimental study of round, turbulent jets and 

plumes. Plumes occur where fluid of different density from the ambient fluid is injected 
(such as smoke rising from a chimney), jets occur where the injected fluid has the same 
density as the ambient fluid. In this paper the initial flow is directed vertically and in 
the same direction as the buoyancy forces. On entering the ambient fluid the source 
fluid flow becomes unstable (see, for example, Crow & Champagne 1971) so that after 
ten to twenty source diameters the flow is turbulent, engulfing ambient fluid. 

The purpose of this study was to investigate the structure of the instantaneous 
boundary between the turbulent jet or plume fluid and the ambient fluid, in particular 
to study the influence of buoyancy forces on a turbulent flow. There is a clear 
difference between the energy balances in a jet flow, where the only source of energy 
is the kinetic energy at the source, and in plume flow, where there is a continuous 
release of potential energy throughout the flow. A general review of energy dissipation 
is given by Kotsovinos (1990). Here I will just give a brief outline of some energy 
considerations. Consider a simple mean flow model based on the entrainment 
assumption as described by Morton, Taylor & Turner (1956). In this model the plume 
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or jet is treated as a straight-sided cone, with entrainment of ambient fluid into the cone 
at a speed proportional to the mean centreline speed. The constant of proportionality 
(the ‘entrainment constant’, generally denoted by a) may be different for jets and 
plumes (aJ and ap say). Writing R for the radius, Z for the distance from the source 
and U for the mean speed, this model gives R proportional to Z for both jets and 
plumes ( R  = 2aJZ for jets and 6apZ/5 for plumes) with U K 1/R for jets and U K 

1/Ri for plumes. The rate of loss of kinetic energy in the jet flow is aJ U 3 / R  per unit 
mass. For the plume flow there is an increase in kinetic energy of gap U 3 / R ,  but this 
is less than the release of potential energy, which is zap U 3 / R .  Thus the energy 
dissipation is aJ U 3 / R  for jets and ap U3/R for plumes. Apart from the possible 
difference between aJ and ap, the dependence of the dissipation rate on the local 
velocity and length scales is the same for both types of flow. 

The flows were studied by measuring the fractal dimension of the boundary between 
the turbulent plume or jet fluid and the ambient fluid. In many practical situations it 
is necessary to know the effective area (measured at an appropriate small scale) of 
contact between a contaminant plume and the ambient in order to calculate the rate 
of diffusion or chemical reaction between the plume and its environment. If the fractal 
dimension and the inner cutoff scale are known then the area of the interface can be 
calculated. The fractal dimension also gives information about the flow similar to that 
traditionally obtained by power spectra and correlations (Hunt & Vassilicos 199 1). 
However, a smaller range of scales is needed to satisfactorily define a fractal dimension 
than is needed for a conventional power spectrum, and flows with lower Reynolds 
number than would normally be considered fully turbulent give ‘high Reynolds 
number’ fractal dimensions. The fact that a smaller range of scales is needed is useful 
in experiments, where the resolution of the measurements may only give a limited range 
of scales, and for numerical models, which may only have a limited range of scales and 
also a fairly low effective Reynolds number. 

Important parameters in considering jet and plume flows are the specific fluxes of 
momentum and buoyancy at the source. These are given by 

M ,  = u2dA and B, = ug‘dA, 

where u is the downstream velocity and g’ is the ‘reduced gravity’ equal to g(Ap/p) ,  
with p the ambient density and p + Ap the density of the source fluid. From these a 
lengthscale can be calculated, 

known as the ‘jet length’. Near the source a plume flow behaves like a jet with 
buoyancy having a negligible effect. Further from the source, on the scale of the jet 
length, the buoyancy begins to dominate the flow. (Note that some authors use the 
above fluxes divided by n for convenience when dealing with circular sources, and their 
jet length differs by a factor of xi.) 

The apparent area of the convoluted boundary between the plume fluid and the 
ambient fluid increases as one measures at smaller and smaller scales. At scales between 
the large scale set by the flow (the plume width) and the small scale where viscosity 
becomes important (the Kolmogorov scale) one expects the dynamics to be scale- 
independent. Thus one expects the flow to be self-similar in this range with the flow 
appearing the same under a range of magnifications, so that the relationship between 
area and measuring scale would be of the form: area = kL2LPD, where L is the 
measuring scale and D is known as the fractal dimension. If the interface were a cone 
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then D = 2 and the apparent area remains constant; if the interface were a space-filling 
sponge then D = 3 and the area would be inversely proportional to the measuring 
scale. A method of estimating the fractal dimension is to count the number of cubes, 
N ,  of size L needed to completely contain the surface. For a cone N = kLP2, for the 
space-filling shape N = kLP3, and for the interface at the edge of the plume a dimension 
between two and three is expected. Though the dimension estimated by box-counting 
methods is identical to the fractal dimension for many shapes, the relationship is not 
trivial (see, for example, Hunt & Vassilicos 1991). However, the term fractal dimension 
will be used in this paper for the measured dimensions, though they might more 
accurately be called ‘box dimensions’. If a two-dimensional slice is taken through the 
surface then a line is obtained, and its dimension can be evaluated by considering the 
number of squares of a given size needed to contain the line. A true two-dimensional 
slice will give a line of dimension one less than the surface. In the experiments described 
here a ‘thick’ sheet of light (passing through the central axis of the jet or plume) is used, 
which results in a line of smaller dimension. In jet flows Prasad & Sreenivasan (1990) 
found that increasing the thickness of the slice decreased the dimension of the line from 
1.36 to 1.22, with the limit reached once the sheet was more than about ten 
Kolmogorov scales thick. This value is the same as that obtained for a two-dimensional 
projection, which is not surprising since most of the contribution to a projection comes 
from the widest part of the flow. The relationship between the fractal dimension of the 
boundary of a projection of a fractal surface (as measured here) and the fractal 
dimension of that surface is not known. The projection boundary could be regarded 
as the set of ‘outermost’ points of a collection of planar cuts of the original surface. 
It seems likely that the length of this set of outermost points grows less rapidly with 
finer measuring scale than does the length of one cut, but there are no general results 
on this subject. 

While jet flows have received much experimental attention, especially the flow near 
the source, flows where buoyancy is important have not been studied in such detail. (A 
comprehensive survey is given in a review paper by List 1982.) Even for jets, studies 
have largely been confined to statistical analyses of one- or two-point measurements 
with little consideration of large-scale structures. 

A particularly thorough study of the statistical properties of jets and plumes is 
described by Papanicolaou & List (1988). They investigated plumes and jets with 
Reynolds number at the source of approximately 1000 for plumes and 5000 for jets, 
taking measurements up to 100 source diameters from the source. The jet length varied 
down to half a source diameter (for a pure jet the jet length may be regarded as infinite). 
Using a similar range of parameters Papantoniou & List (1989) investigated large-scale 
structure by measuring the concentration on a line perpendicular to the plume 
centreline over a time of several minutes. They identify large-scale features passing the 
measuring station and give the typical form of these features: a sharp increase in 
concentration at the ‘front’ of the feature, decaying more gradually at the ‘rear’. 

In the present work the far field of the flow (several hundred source diameters 
downstream) is observed. In addition (for plume flows) the jet length is always at least 
50 source diameters so that the flow is fully turbulent before buoyancy has a significant 
effect. In the next section the experimental details are described and in 93 the image 
processing procedure used to analyse the experiments is set out. The results will be 
given in 94 and some discussion and conclusions in $ 5 .  
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FIGURE 1. Schematic section of the apparatus. 

2. Experiments 
The experiments consisted of injecting source fluid vertically down into a large tank 

of water (60 cm square by 1.75 m high). The source was a 50 cm long tube of internal 
diameter 0.508 mm. The source fluid was forced through this tube from a pressurized 
canister at a pressure of about 50 p.s.i. (350 kPa). This gives a steady flow rate of up 
to 1 cm3 s-l. Density differences of up to 18 YO were produced by adding salt to the 
source solution. The source Reynolds numbers were in the range 800 to 1800 for both 
jets and plumes. In calculating the momentum flux it was assumed that the flow in the 
tube was Poiseuille. Plumes can be achieved with jet lengths down to 2 cm: note that 
this is still many times the source diameter so that turbulent flow is fully established 
before buoyancy forces begin to dominate. A sketch of the apparatus is given in 
figure 1. 

The flow was visualized by adding fluorescein dye to the source fluid. The 
diffusivities of both the dye and salt are about 1000 times smaller then the viscosity of 
water, and the diffusive scales below the Kolmogorov scale will not be examined here. 
The flow was illuminated by a vertical light sheet from conventional slide projectors 
about 2 m from the tall tank. The light sheet was produced by masks on the side faces 
of the tall tank, having slits of adjustable width. With only one projector there is some 
attenuation in observed intensities between the part of the flow nearer the light source 
and that away from the source. This is due partly to the absorption of light by the dye 
and partly to the spreading of light from the source. These effects are greatly alleviated 
by the use of two projectors. (See figure 2.) 

The light sheet was adjusted to taper to a point at the same (vertical) level as the 
source of injected fluid. The tapered sheet of light has two main advantages over a 
parallel-sided sheet. First, with any sheet of light one is effectively averaging the 
concentration over the thickness of the sheet. With a tapering sheet this averaging is 
performed over a thickness proportional to the local plume width whereas with a 
parallel-sided sheet the averaging is performed over smaller scales (compared with the 
local plume width) as one goes further from the source. Second, since the concentration 
of source fluid decreases with distance from the source, the intensity of light ‘reflected’ 
by the dye with a sheet of constant width also decreases. With a tapered sheet there is 
no decrease in mean intensity for a jet, and less decrease for a plume, as one goes 
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FIGURE 2. Schematic plan of the apparatus showing the lighting and video camera. 

Experiment 

J1 
52 
53 
54 
P1 
P2 
P3 
P4 
P5 

Reynolds number 
Re = ud/v 

1400 
1700 
1300 
960 
1300 
1800 
1300 
1200 
800 

Reduced gravity 
g' (cm sP) 

0 
0 
0 
0 
45.1 
45.1 
152 
181 
181 

Jet length 
L, ( 4  

co 
co 
a3 
co 

12.6 
18.3 
5.62 
6.02 
4.02 

Symbol 
in figure 8 

+ 
X 

0 * 
0 
n 
V 
0 

TABLE 1 .  Values of the experimental parameters for experiments JlLJ4 (jets) and Pl-PS (plumes) 

further from the source. This gives much improved resolution of the concentration field 
far from the source. 

In these experiments the Kolmogorov scale (the scale below which viscous effects 
dominate) was about 0.2 mm. It should be noted that the light sheet was always much 
thicker than the Kolmogorov scale. The flow was recorded by a high-quality video 
system. 

The values of the experimental parameters are given in table 1. The Reynolds 
number given is that at the source, based on the source diameter and the mean velocity 
there. Note that the Reynolds number (Re) does not vary with distance from the source 
for jet flows (the mean jet speed is inversely proportional to the distance) but does 
increase for plume flows (but only significantly at distances greater than one jet length). 

3. Image processing 
The video recordings of the experiments were processed using a micro computer 

(PC/AT type) in conjunction with an S-VHS video recorder. Video images are 
digitized by a frame-grabber to give an array of values corresponding to the intensity 
of the light. The array was 512 by 512, with intensities recorded as integers in the range 
0 to 255. Each pixel in the image represents an area in the flow of approximately 
0.2 mm square (of the order of the Kolmogorov scale), with the whole imaged area 
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FIGURE 3. A digitized image from an experiment. The darker shades correspond to higher light 
intensities so this is essentially a negative of what is observed. 

being approximately 100 mm square, centred 175 mm from the source. In calibration 
experiments it was found that the values given by this technique were related linearly 
to the dye concentration, at least for the relatively low light intensities used in these 
experiments (nonlinearities are apparent for higher intensities where the response 
flattens off). Figure 3 shows a digitized image from a single frame. For each experiment 
the mean intensities were found by taking an average of 250 video frames, taken at 
regular intervals from two minutes of recordings (thus about one frame every half- 
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FIGURE 4. Contour of one intensity from a single image. The intensities were normalized with 
respect to the centreline mean before contouring. 

second). The mean values along the centreline of each jet or plume were used to 
normalize the intensities, so that intensities were normalized by the local mean 
centreline value. 

For each experiment 16 instantaneous images were captured at intervals of about 5 s. 
The concentrations were normalized by the centreline mean as described above and 
contours of concentration were found. An example of a contour is given in figure 4. 
The fractal dimension of such contours was found by a box counting method, with the 
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intensity threshold for contours in the range 0.1 to 1 . 1  times the local mean centreline 
value. Because the flow spreads with distance from the source it is necessary to use 
boxes that are related to the local lengthscale (i.e. plume width) as sketched in figure 
5 .  A range of box sizes was used the largest of side equal to approximately half the local 
plume width, with a ratio of lengths from the largest to smallest of about 100. 

4. Results 
Mean intensities were calculated as described above. The intensities were then 

normalized with respect to the centreline mean. This mean was found by averaging the 
central 25 pixels (5 mm) of the image. Contours of normalized mean intensity are 
shown in figure 6. Two main differences were found between the mean concentration 
profiles for jets and plumes. First the jets spread at a wider angle than the plumes, and 
second the cross-stream profile is different. While the plumes fitted a Gaussian profile 
the jets did not. Trying profiles of the form exp(-lr/rslfl), it was found that n z 2.6 
gave the best fit for jets (in the sense that if the range of data was varied, a constant 
value for rs was obtained). Putting a factor of ((n - l)/n) in the exponential, so that the 
point of inflexion is at r = f rs, the results for the mean distribution were : for jets 

with rs = (0.164f0.005)~; 

and for plumes 

with rs = (0.085 f 0.005) z, 

where z is the distance from the source (jets) or virtual origin (plumes). Note that for 
plumes the flow is initially jet-like, with a correspondingly larger spreading angle. The 
spreading rate given above is determined from distances greater than a jet length with 
z measured from a virtual origin behind the source. The plume spreading rate is in 
agreement with that found by Rouse, Yih & Humphreys (1952): they found rs = 
0.084. For comparison between jets and plumes, and work by other authors, it is 
convenient to describe the spreading in terms of the contour of 50% of the mean 
centreline value. Defining ri as the radius at which the mean concentration is half that 
of the centreline value gives, for jets, 

r; = (0.172 f 0.005) z,  

and for plumes, ri = (0.100f0.006)z. 

For each experiment 16 images were used to calculate the fractal dimensions. For each 
image the dimensions of several contours were calculated. The mean dimension for a 
given contour intensity was then calculated from the 16 realizations for each 
experiment. For example, to calculate the dimension of the 30% contour for an 
experiment the dimension of the 30% contour in each of the 16 images for that 
experiment was calculated, and then the mean of those 16 values taken. Plots of 
number of boxes versus box size for four images from one experiment are shown in 
figure 7; the dimension was found by fitting straight lines to such data using a least- 
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FIGURE 5. Diagram illustrating the box counting method used to determine the dimension of 
contours. 

squares fit. The data are close to a straight line but there is a distinct curve. This is 
probably due to the small range between the integral and Kolmogorov scales at the 
Reynolds numbers of these experiments : the largest box-dimension used was close to 
the integral scale, the smallest box-dimension was only a few times the Kolmogorov 
scale. The fractal dimension of the contours is different for contours of different 
intensity as shown in figure 8, though there is little difference between the same contour 
intensity for different experiments. The high fractal dimension for low concentrations 
corresponds to the high fractal dimension of the background noise. 

A feature of particular interest is the value of the fractal dimension in the flat part 
of the graph around the minimum, corresponding to the dimension of the line 
separating the turbulent plume fluid from the ambient fluid. The fractal dimension of 
this interface was found to be 1.23 for both jets and plumes (the standard deviation of 
the mean position of the minimum was kO.01). No systematic variation of this value 
with jet length or Reynolds number was found. It was pointed out earlier that the light 
sheet was much thicker than the Kolmogorov scale, so that the image is effectively a 
two-dimensional projection of the plume rather than a true two-dimensional cut. The 
value of 1.23 is in agreement with the value found for jets and clouds by Prasad & 
Sreenivasan (1990). According to the Prasad & Sreenivasan results for slits of various 
widths a projection dimension of 1.23 would correspond to a true dimension of 2.37 
for the boundary surface. Constantin, Procaccia & Sreenivasan (1991) have shown 
that the dimension of a contour imbedded in the fully turbulent part of the flow is 2.67 
(i.e. larger than that for the boundary), and this might explain the higher measured 
dimension for contours of higher concentration shown in figure 8, though there are no 
other results for the projections of surfaces within the fully turbulent region. However, 
it must be remarked that there is a tendency to undercount the number of big boxes 
for contours of high concentration as one box will cover the contour on both sides of 
the plume, giving an overestimate of the dimension for the higher concentrations. 

While the graphs shown in figure 8 are fairly flat in the neighbourhood of the 
minimum it could be argued that the minimum is just an artefact of the particular 
noise-level cutoff for these experiments. The slopes of the graphs are fairly constant for 
C / C ,  in the range 0.3 to 0.6, and continuing this slope to the intercept where the 
concentration is zero gives a value for the dimension of 1.16 (with standard deviation 
of the intercept of i-0.02). 



5 .  Discussion 
The fractal dimensions of concentration contours in jet and plume flows have been 

measured. In making these measurements careful normalization with respect to the 
local concentration and length scales has been made. The measured dimensions of the 
contours were found to be the same for jets and plumes despite the presence of 
buoyancy forces in the latter case. It should be noted that presuming the flows to be 
Reynolds-number independent leads to the same value of the fractal dimension 
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(b) 

53 1 

FIGURE 6. Contours of mean normalized intensities for (a) a jet flow (Jl) and (b) a plume flow (Pl). 
Note the wider spreading angle of the jet flow. The contours are at intervals of 10% of the centreline 
mean. 

regardless of the flow type (see, for example, Sreenivasan 1991). This is because the 
total diffusion (of momentum or scalar tracers) is set by the larger scales and the area 
at the smallest scale must be of the correct size to allow this diffusion to take place. 
Thus, whilst buoyancy has an influence upon the large-scale properties of the flow, the 
small-scale features depend only upon the scales set by the type of flow. Thus the small- 
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Box dimension/plume radius 
FIGURE 7. Examples of box number versus box size plots. The results are for the 30 % contour on 

four images from one experiment (Jl). Different symbols are used for the different images. 

scale features are very similar for jets and plumes, with buoyancy having no 
appreciable direct effect. The larger scales are affected, however, with jets having a 
broader spread of the mean concentration profiles than plumes and there is also a slight 
difference in the form of the profile. 

There was found to be significant variation of dimension with threshold (see figure 
8). The minimum dimension was found to be 1.23, at a threshold of approximately 
25% of the local mean, and this is in agreement with previous workers. However, it 
could be the case that this minimum is just an artefact of the noise-level cutoff in these 
experiments. The estimated dimension of the zero concentration contour (1.16) may be 
a more useful quantity, but it is clear that no single value for the dimension gives a 
complete description. 

The significant changes of dimension with threshold raises doubts about the results 
of earlier authors using contours of constant (un-normalized) concentration. Such 
contours will follow the outer part of the flow with low values of C/Co (and low 
dimension) in the upstream part of the image, but move into the interior (with higher 
dimension) further downstream. The measured dimension will be an average weighted 
towards the downstream part of the flow. This weighting comes from the fact that the 
contour lengths will be longer downstream, partly because the flow is broader (relative 
to constant-sized boxes) and partly because the dimension is increased. Sufficiently far 
downstream, for a given threshold, the contour length will decrease again as there are 
only small regions with very high concentration. In the present experiments the 
maximum contour length (for a given box scale) occurs for contours of threshold 
approximately equal to the local centreline mean (i.e. C/C, z l.O), and drops off 
sharply beyond this (which is why no data are presented for C/Co > 1.1). Furthermore, 
varying the threshold in un-normalized measurements will tend to result in simply 
measuring a similar contour further up- or downstream in the image. The result will be 
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that little change in the measured dimension would be observed until the threshold is 
changed sufficiently so that a significant part of the contour is no longer in the viewed 
area. This is likely to give a false plateau in dimension versus intensity plots. In short, 
if there are significant variations in the local scales for concentrations and length then 
these must be accounted for when examining fractal dimensions. 

This study was undertaken whilst I was a Research Fellow at the Department of 
Applied Mathematics and Theoretical Physics (DAMTP), Cambridge, funded by the 
Natural Environment Research Council. I would like to thank the technicians at 
DAMTP for their help with designing and building the apparatus, and the referees for 
their constructive comments and useful references. I also especially thank Dr S .  B. 
Dalziel, without whose work and advice on image processing this study would not have 
been possible. 
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